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Abstract
Quantum measurement will inevitably cause backaction on the measured system, resulting in
the well-known dephasing and relaxation. In this paper, in the context of solid-state qubit
measurement by a mesoscopic detector, we show that an alternative backaction known as
renormalization is important under some circumstances. This effect is largely overlooked
in the theory of quantum measurement.

1. Introduction

One of the key requirements for physically implementing
quantum computation is the ability to read out a two-
state quantum system (qubit). Among various proposals,
an important one is to use an electrometer as a detector
whose conductance depends on the charge state of a nearby
qubit. Such an electrometer can be a quantum point contact
(QPC) [1–8] or a single-electron transistor [9–16]. Both of
them have been preliminarily implemented in experiments
for quantum measurements [17–21]. Also, similar structures
were proposed for entanglement generation and detection by
conduction electrons [22–24].

The problem of measuring a charge qubit by a QPC
detector has been well studied in the high bias voltage regime.
Work for arbitrary measurement voltage has also been reported
although relatively limited [8, 25]. Most of them only
dealt with the measurement-induced dephasing and relaxation,
which, from the perspective of information, are consequences
of information acquisition by measurement. The physical
interaction between the measurement apparatus and the qubit,
however, gives rise to another important backaction which
renormalizes the internal structure of qubit.

In this context, we revisit the measurement problem, while
taking fully into account the energy renormalization. This
effect was often disregarded in the literature. Indeed, the
steady-state renormalization can be effectively included in the
Caldeira–Leggett renormalized system Hamiltonian [26–29].

The resulting dynamics is, however, different in detail from
that of the dynamical renormalization approach [26, 27].
The apparent distinction should be sensitively reflected in
the output power spectral density studied in this work.
Our analysis shows that the renormalization effect on
qubits becomes increasingly important as one lowers the
measurement voltage. Therefore, it would require us in
practice to have this feature being taken into account properly
in order to correctly analyze and understand the measurement
results.

2. Model description

The system under investigation is schematically shown in
figure 1. The Hamiltonian of the entire system is of HT =
Hqu+HD+H ′, with the qubit, QPC detector and their coupling
parts being modeled respectively by

Hqu =
∑

s=a,b

εs |s〉〈s| + 1
2� (|a〉〈b| + |b〉〈a|) , (1a)

HD =
∑

k∈L

εk ĉ†
k ĉk +

∑

q∈R

εqĉ†
q ĉq, (1b)

H ′ =
∑

s=a,b

∑

k,q

ts
kq ĉ†

k ĉq · |s〉〈s| + H.c. (1c)

The amplitude t s
kq of electron tunneling through two reservoirs

(α = L and R) of the QPC depends explicitly on the qubit
state. Denote Qs ≡ |s〉〈s| hereafter. Thus, the qubit–QPC
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Figure 1. Schematic set-up of a solid-state charge qubit measured
continuously by a quantum-point contact (QPC).

detector coupling in the HD-interaction picture is H ′(t) =∑
s[ f̂s(t)+ f̂ †

s (t)]·Qs , with f̂s(t) ≡ eiHDt(
∑

kq ts
kq ĉ†

k ĉq)e−iHDt .
The effects of the stochastic QPC reservoirs on measurement
are characterized by C̃ (+)

ss ′ (t −τ ) ≡ 〈 f̂ †
s (t) f̂s ′ (τ )〉 and C̃ (−)

ss ′ (t −
τ ) ≡ 〈 f̂s (t) f̂ †

s ′ (τ )〉. In terms of the reservoir’s spectral density
functions, which are defined physically as

Jss ′(ω, ω′) =
∑

k,q

ts
kq ts ′

kqδ(ω − εk)δ(ω
′ − εq), (2)

these QPC coupling correlation functions are

C̃ (±)
ss ′ (t) =

∫ ∫
dω dω′ Jss ′(ω, ω′) f (±)

L (ω) f (∓)
R (ω′)ei(ω−ω′)t .

Here, f (±)
α (ω) = {1 + e±β(ω−μα)}−1 relates to the Fermi

function of the lead α, with β = (kBT )−1 the inverse
temperature. The coupling spectrum function used later is
defined by

C (±)

ss ′ (ω) ≡
∫ ∞

−∞
dt C̃ (±)

ss ′ (t)e−iωt . (3)

Throughout this work, we set μ
eq
L = μ

eq
R = 0 for the

equilibrium chemical potentials (or Fermi energies) of the QPC
reservoirs in the absence of applied bias voltage and h̄ = e = 1
for the Planck constant and electron charge.

3. Particle-number-resolved master equation

The reduced density matrix of the qubit is formally defined as
ρ(t) ≡ TrD[ρT(t)], i.e. tracing out the QPC reservoir’s degree
of freedom over the entire qubit-plus-detector density matrix.
The qubit system Liouvillian is defined via LÔ ≡ [Hqu, Ô].
By treating H ′ as a perturbation, a master equation for the
reduced density matrix can be derived as [26, 27, 30]

ρ̇(t) = −iLρ(t) − 1
2

∑

s

[Qs, Q̃sρ(t) − ρ(t)Q̃†
s ], (4)

with Q̃s ≡ Q̃(+)
s + Q̃(−)

s and

Q̃(±)
s ≡

∑

s ′
[C (±)

ss ′ (L) + i D(±)
ss ′ (L)]Qs ′ . (5)

Here, C (±)

ss ′ (L) ≡ C (±)

ss ′ (ω)|ω=L is the spectrum function
defined earlier. The dispersion function D(±)

ss ′ (L) can then be
evaluated via the Kramers–Kronig relation:

D(±)
ss ′ (ω) = 1

π
P

∫ ∞

−∞
dω′ C (±)

ss ′ (ω′)
ω − ω′ . (6)

Physically, it is responsible for the renormalization [26–29].
To achieve a description of the output from the detector,

we employ the transport particle number ‘n’-resolved reduced
density matrices {ρ(n)(t); n = 0, 1, . . .} that satisfy ρ(t) =∑

n ρ(n)(t). The corresponding ‘n’-resolved conditional
quantum master equation is [8, 31, 32]

ρ̇(n)(t) = −iLρ(n)(t) − 1
2

∑

s

{Qs Q̃sρ
(n) − Q̃(−)

s ρ(n−1)Qs

− Q̃(+)
s ρ(n+1)Qs + H.c.}. (7)

We would like to account for the finite bandwidth of
the QPC detector, which will be characterized by a single
Lorentzian. Real spectral density has a complicated structure,
which can be parameterized via the technique of spectral
decomposition [33, 34]. This complexity, however, will only
modify details of the results, but not the qualitative picture.
For the sake of constructing analytical results, we assume a
simple Lorentzian function centered at the Fermi energy for
the spectral density (2). This choice stems also from the
assumption that the energy band of each reservoir is half-filled.
Moreover, the bias voltage is conventionally described by a
relative shift of the entire energy bands, thus the centers of the
Lorentzian functions would fix at the Fermi levels. Without
loss of generality, we simply assume

Jss ′(ω, ω′) = TsTs ′
�0

Lw2

(ω − μL)2 + w2
· �0

Rw2

(ω′ − μR)2 + w2
. (8)

We set Ta ≡ 1 and Tb ≡ 1 − χ . The asymmetric qubit–
QPC coupling parameter is of 0 < χ < 1, as inferred from
figure 1. The correlation function of (3) can be evaluated as
C (±)

ss ′ (ω) = TsTs ′ C (±)(ω), with

C (±)(ω) = ηg(x)

1 − eβx

[
w2

x
{φ(0) − φ(x)} − w

2
ϕ(x)

]

x=ω±V

.

(9)
Here, η = 2π�0

L�0
R, g(x) = 4w2/(x2 + 4w2) and V =

μL − μR is the applied voltage on the QPC detector; φ(x)

and ϕ(x) denote the real and imaginary parts of the digamma
function �( 1

2 + β w+ix
2π

), respectively. Knowing the spectral

function, the dispersion function D(±)

ss ′ (ω) = TsTs ′ D(±)(ω)

can be obtained via the Kramers–Kronig relation. The
present spectrum functions satisfy the detailed-balance relation
C (+)(ω) = e−β(ω+V )C (−)(−ω). This means that our approach
properly accounts for the energy exchange between the qubit
and the detector during measurement.

4. Output power spectral density

In continuous weak measurement of qubit oscillations, the
most important output is the spectral density of the current.
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Typically, the power spectrum is defined with a stationary state.
The involving stationary state ρst can be determined by setting
ρ̇st = 0 in (4), together with the normalization condition, at
a given bias voltage and temperature. For clarity, we focus
hereafter on the symmetric qubit case, with the state energies
of εa = εb = 0.

Let us start with the average current. Using the ‘n’-
resolved master equation (7), the average current can be
expressed as I (t) = ∑

n n Tr[ρ̇(n)(t)] = Tr[J (−)ρ(t)], where
J (−) is one of the superoperators, defined as

J (±)ρ(t) ≡ 1
2

∑

s

(Q̃(−)
s ± Q̃(+)

s )ρ(t)Qs + H.c. (10)

The stationary current can be carried out as

Ī = Iaρ
st
aa + Ibρ

st
bb + Iabρ

st
ab, (11)

which for a symmetric qubit (εa = εb = 0) is of

Ia =
(

1 − χ

2

)
C(0) tanh

(
βV

2

)
+ χγ̄+,

Ib = (1 − χ)

[(
1 − χ

2

)
C(0) tanh

(
βV

2

)
− χγ̄+

]
,

Iab = χ2γ̄−.

(12)

Here, γ̄± ≡ 1
4 [C̄(�) ± C̄(−�)], with C̄(ω) ≡ C (−)(ω) −

C (+)(ω). Denote also C(ω) ≡ C (−)(ω) + C (+)(ω).
The noise spectral density can be calculated via

MacDonald’s formula [35]:

S(ω) = 2ω

∫ ∞

0
dt sin(ωt)

d

dt
[〈n2(t)〉 − ( Ī t)2], (13)

with 〈n2(t)〉 ≡ ∑
n n2 Tr{ρ(n)(t)}. Applying equation (7) gives

d

dt
〈n2(t)〉 = Tr[2J (−) N(t) + J (+)ρst], (14)

where N(t) ≡ ∑
n nρ(n)(t), which can be calculated via

dN

dt
= −iLN − 1

2

∑

s

[
Qs, Q̃s N − N Q̃†

s

] +J (−)ρ(t). (15)

For a symmetric qubit, an analytical result is available. We split
the spectrum into four components, S = S0 + S1 + S2 + S3,
and present them one by one as follows. First, the frequency-
independent background noise S0 is

S0 = 2 Ī coth

(
βV

2

)
− χ2(γ−/γ+)

[
γ− − γ̄− coth

(
βV

2

)]

+ χ[χ − (2 − χ)δ P̄]
[
γ+ − γ̄+ coth

(
βV

2

)]
, (16)

with γ± ≡ 1
4 [C(�) ± C(−�)] and δ P̄ ≡ ρst

bb − ρst
aa which

is nonzero due to the asymmetric qubit–QPC coupling. The
second component is a Lorentzian, with the peak at ω = 0 and
the dephasing rate of γd = χ2γ+. It is

S1 = (Xγd − χ2γ− Ī )
2Iab

ω2 + γ 2
d

. (17)

Figure 2. Power spectral density of the detector current, with the
frequency and voltage labeled in units of �. The bandwidth
w = 15�. Other parameters are η = 2, χ = 0.2 and β� = 1.

Here, 2〈a|J (+)ρst|b〉 ≡ X + iY (the real and imaginary parts).
We remark that S1 arises completely from the qubit relaxation-
induced inelastic tunneling effect in the detector [8]. The last
two components are

S2 =
[
(χ2γ− Ī − Xγd)ε̃

ω2 + γ 2
d

+ Y

]
ω2γ ′

d A − (ωω′ − ��̃)B

ω2γ ′
d

2 + (ωω′ − ��̃)2
,

(18)

S3 =
[

(χ2γ− Īγd + Xω2)ε̃

ω2 + γ 2
d

− �Z

]
γ ′

d B − (ωω′ − ��̃)A

ω2γ ′
d

2 + (ωω′ − ��̃)2
.

(19)
Here, ε̃ and �̃ are the renormalized version of the original ε ≡
εa − εb and � of the qubit. They are related to the dispersion
functions of the detector. Let D(ω) ≡ D(−)(ω) + D(+)(ω)

and D̄(ω) ≡ D(−)(ω) − D(+)(ω). Simple analysis on the
symmetric case (ε = 0) gives

ε̃ = χ

(
1 − χ

2

)
D(0), (20a)

�̃ = � + 1
4χ2[D(�) − D(−�)]. (20b)

For the bookkeeping of (18) and (19), we have also introduced
Z ≡ 1

2 [(Ia + Ib)δ P̄ + (Ia − Ib)] + ( 2
χ

− 1)Iabρ
st
ab, and the

frequency-dependent quantities of

ω′ ≡ ω

(
1 − ε̃2

ω2 + γ 2
d

)
, γ ′

d ≡ γd

(
1 + ε̃2

ω2 + γ 2
d

)
,

A ≡ χ

(
1 − χ

2

)
[D̄(�) − D̄(−�)] + 2ε̃ Iab

γ 2
d

ω2 + γ 2
d

,

B ≡ −2(Ia − Ib)� + 2ε̃ Iab
ω2

ω2 + γ 2
d

.

(21)
The computed noise spectrum is displayed in figure 2.

It is of interest to note that the spectral peak, apart from the
zero frequency, which is the signal of qubit oscillations, shifts
with the measurement voltages. (i) In the high voltage regime
(e.g. for V � 30 � as shown in figure 2), the oscillation
peak is located approximately at ω ≈ �; (ii) on lowering
the voltage, the measurement-induced renormalization effect
becomes increasingly important, which strongly affects the
position of the oscillation peak.
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Figure 3. Renormalization on the qubit level energy (a) and coupling
(b), exemplified by three values of bandwidth w (in units of �).
Other parameters are the same as in figure 2.

The feature of the noise spectrum in figure 2 is closely
related to the renormalization of the qubit parameters ε

and �. In the limit of weak qubit–QPC coupling, the

renormalized Rabi frequency is given by ωR =
√

ε̃2 + �̃2.
The renormalization effect (ωR − √

ε2 + �2) increases
monotonically with the QPC bandwidth (w). In figure 3 we
plot ε̃ and �̃, in terms of the η-scaled renormalizations, against
the bias voltage for different bandwidths. The renormalized
qubit state energy difference ε̃ increasingly deviates from the
original ε = 0 as the QPC bandwidth increases or the applied
voltage decreases, as shown in figure 3(a). In contrast, the
inter-state coupling renormalization is negligibly small, as
depicted in figure 3(b) and also claimed in [25]. That (ε̃ − ε)

being dominant can be readily understood by the form of
coupling H ′ of (1c), which modulates the level energies, rather
than the level coupling. In the wide-band limit (w → ∞), the
energy renormalization would diverge. However, this feature
is an artifact, since in reality a natural cutoff of the bandwidth
must exist. That is the reason we introduce a Lorentzian cutoff
in (8).

The noise spectrum itself depends on η in a rather
complicated manner, especially the S2 and S3 components
((18) or (19) with (21)) that are dynamical in nature. In
contrast, the algebraic nonlinear dependence of η in the
average current Ī (11) and S0 (16) arises from the renormalized
stationary ρst only. In the literature (e.g. [25]) the dispersion
function is often disregarded explicitly, with its effect
being included in the Caldeira–Leggett renormalized system
Hamiltonian [26–29]. However, this approach gives rise to
quite different dynamics from the present result, even though
their stationary state behaviors could be similar [26, 27].
Apparently, the dynamic distinction should be sensitively
reflected in the shot noise spectrum. In the context of qubit
measurement by a QPC detector, our analysis can serve as a
detailed investigation of the dynamical renormalization effect.

In figure 4 we further show the signal-to-noise ratio
of the noise spectrum against the bias voltage for different
bandwidths. In the limit of large bias V � � and for weak
qubit–QPC coupling, the signal-to-noise ratio

S(ωR) − S0

S0

∣∣∣∣
V ��

→ 4
(2 − χ)2

(2 − χ)2 + χ2
(22)

Figure 4. Bias voltage dependence of the peak-to-pedestal ratio of
the output power spectrum, exemplified with the same parameters in
figure 3.

can reach the limit of 4, i.e. the Korotkov–Averin bound for
any linear response detectors [3, 36–38].

As seen in figure 2, the detector-induced renormalization
also results in a wide voltage range where the coherent peak
at the renormalized Rabi frequency and the sharp peak at zero
frequency coexist. In that regime, the level mismatch induced
by the detector is prominent, while the qubit coherence is
not strongly destroyed. As is well known [3, 25, 39], the
peak at zero frequency is a signature of the Zeno effect in
continuous weak measurement. The basic picture is that the
detector attempts to localize the electron in one of the levels
for a longer time, leading thus to incoherent jumps between
the two levels. Finally, in figure 2, the coherent peak persists
to high bias voltage, while the zero frequency peak eventually
disappears. This feature is different from the previous work [8].
The reason is twofold. On the one hand, as shown in figure 3,
the renormalization of energy levels is weak at high voltage.
On the other hand, in this work we adopted a finite bandwidth
model for the QPC. This implies that in the high voltage regime
the QPC (measurement) current is weak, which differs from
the result under the usual wide-band approximation. As a
consequence, the weak backaction from the detector together
with the alignment of the qubit levels results in the spectral
feature shown in figure 2 at high voltages.

5. Conclusions

In summary, we have revisited the problem of continuous
measurement of a solid-state qubit by quantum point contact.
Our results showed that the renormalization effect, which was
neglected in previous studies, can significantly affect the output
power spectrum. This feature should be taken into account in
the interpretation of measurement result. We also note that the
renormalization in the present set-up may be quantified in situ.
No reference to the bare qubit is needed, as it can be effectively
replace the band-edge large voltage transport limit.
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